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Abstract

Given a symmetric operator in a Hilbert space, then one can consider its selfadjoint extension a Krein space. We show that selfadjoint Krein space extension play a natural role in certain boundary value problems. We will show that boundary value problems with eigenvalue depending boundary conditions are lineraized.
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1 Introduction

We shall consider canonical systems of first order differential expressions regular on the compact interval [a,b]. For a given symmetric linear relation S in a Hilbert space H the selfadjoint extensions of S can be characterized as restrictions of the adjoint S* of S, when S is the minimal relation associated with a formally symmetric ordinary differential expression in L2-function space, then the restrictions involve linear combinations of the boundary values of the elements in the domain D(S*) of S*. When the selfadjoint extensions are canonical within the space H , the coefficients of these combinations can be taken to be constants. In the case of selfadjoint extensions in inner product spaces larger than the given space H , they depend analytically on a parameter, see [3], [9] [11], [18] and [22]. We shall prove that every generalized resolvent R(
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) of S can be expressed in terms of a fixed generalized resolvent G(
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) of S and the Weyl coefficients Ψ(
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) of R(
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) relative to G(
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) as             
                                    R(
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) f = G(
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) f + s(
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)Ψ(
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) [f,s(
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)],                 (1)
Where S(
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) is a holomorphic basis for the null space v(S* - 
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) , One of the most important problems in the theory of operators is that of extension of symmetric operator to a selfadjoint one on a Hilbert space H. When we have a symmetric linear relation in Hilbert space, the situation will be far more important so that the spectral theorem can be constructed. Given a symmetric linear relation S in Hilbert space H2 with equal defect numbers n, n, then there exists a selfadjoint extension for that relation in this Hilbert space. We define a minimal and maximal relation associated to S on a llilbert space H2. We may take this S to be S = Tmin(C*, where C is spanned by {(,(}, ( - dimensional subspace in H2, Tmin is the minimal relation in H2. We shall construct the extensions of S related to the generalized resolvents and the selfadjoint extensions in H2 we have mentioned above.

2. PRELIMINARIES 
Several observations in this section can be found in [5], [6] and [27]. If T, S are single-valued, then T,S become graph of linear operators. We shall use the following notations:

D(T) = {x|(y, {x,y}(T] , The domain R(T)
= {y|(x, {x,y}(T] , The range , in particular 
T(0) = {y|{0,y}(T} multivalued part 

(T)

= {x|{x,0}(T} nullspace 

T+S

= {{x,y+z}|{x,y}(T, {x,z}(S} sum 

ST  

=  {{x,z}|{x,y}(T,{y,z}(S} product 

ℝ 

= Set of real numbers 

ℂ  

= Set of complex numbers 

ℂ 0
= ℂ \ ℝ
T(

= orthogonal component in H2

T(S

=T(S(, see [10] and [13]

 Now consider the symmetric relation S= Tmin(C* in a Hilbert space H, where C={(,(}, ( - di​mensional subspace in H2, Tmin defined as in section 2 in [19]. Tmin={{f,g}(Tmax|f(a) = 
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, f(b)= 
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}. Tmax := {{f,g}((L2((dt))2 with the property that f contains an abso​lutely continuous function 
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 such that from some
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It is clear that S(S* and rom von Neumann's identity 
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 direct sums, ((C0. As usual, there exists a selfadjoint extension A in Krein space K for S and then we have H(A, S(A, ((A)(( where ( is the resolvent set, we shall consider this special case as an example.

Consider the system 
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, we assume that system is regular at a limit point at b, and we define Tmax := {{f,g}(
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 is Q-function of S and 
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), see [8], [9], [11] and [20].

3. Extension  in   perturbing   case

In the extension theorem in this section, we considered extensions of symmetric subspaces in the same Hilbert space H. If, however, the deficiency indices of S are not equal, then there always exists a Hilbert space 
[image: image28.wmf]H

~

, such that H(
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~

, and S has a selfadjoint extension in H. Such an extension is called finite dimensional if: dim(
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~

 (H) < ∞, see [12], [15], [16] and [21].

Theorem 3.1. The extension of S corresponds to the generalized boundary value problem with Stieltjes boundary conditions 
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Proof : For that when S = Tmin (C*, ({f,g}(Tmax,{(,0}(C),Tmax=
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min

T

 and when D((
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)D*(n+r)x(n+r) which describes the extension problem we need. We refer to [3], [14], [17] and [18].

The results presented in this section were given by Coddington [6], but we give here an independent and much simpler proof of these results.

Let S be the graph of a Hermitian operator in H, i.e.,

[Sf,g]=[f,Sg] for all f and g in D(S),

such that D(S) is not necessarily dense in H but such that
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. Suppose that an extension of S, A say, exists. Then A is the graph of an operator selfadjoint in
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. All the selfadjoint extensions of S in H can be described in this way, since we have the following (see [5], [24] and [27]).

Lemma 3.1. Let K be a closed subspace of H, and let A be the graph of an operator such that 
[image: image36.wmf])

(
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 = K and A is selfadjoint in K. In particular R(A)( K. Let:  
                                           B=A({(o,g)(H2:   g(K(}  



              (2)
Then B is a selfadjoint subspace in H2.
Proof. First note that since K is closed, we can write H=K( K( so that any element f(H can be written as f = f1 + f2 , where f1 (K, f2 ( K( and [f1, f2]=0.

Now let {f,g}(B, {f,g} be of the form {h,Ah+g}, where h(D(A) and g(K( . From any clement {h', Ah' + g} ( B we have [Ah'+g'1h] = [Ah',h]+[g'1,h]
=[h', Ah] = [h',Ah=g1]

Since [Ah',h] = [h',Ah], {h, Ah}(A, which is selfadjoint. Hence {f,g}(B* so that B(B*. Conversely, let {f,g}(B* so that

[Ah + g1,f] = [h, g] for all {h, Ah + g1}(B                   (3)

where {h,Ah}(A,g1(K(. 

Also B*(A* implies that

[Ah,f}= [h,g] for all h(D(A)
                                      (4) 

So that using (4) we get from (3)

[g1,f]=0 for all g1(K( 

                      (5)

f(D(A) if f(0, so that {f,Af}(A. Suppose that g'1 = y - Af. To show that g'1(K(
For h(D(A)

[g'1,h]=[g-Af,h]=[g,h]-[Af,h]

implies [g,h]

= [f, Ah+g1] so that

[g'1, h]

= [f, Ah+g1]-[Af,h]

=[f,g]=0
Hence, g'1( K(. So any {f,g}( B* is of the form {f,g} = {f,Af + g'1}, where g'1(K(, so that {f,g}(B. Hence B*(B.

This proves the lemma.

To find connection between possible extensions of S in 
[image: image37.wmf])

(
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and the extensions in the Hilbert space H, we denote the adjoint of S in 
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(
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D

 by S*. Let D+ ,D- be the spaces defined by

                                        D± = {(g1,S*g1)(S*g1= ±ig1}.                                              (6)

Then according to the extension theorem, S has a selfadjoint extension in 
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(
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 if and only if dim D+ = dim D- . Let:

X± = {{h,±ih} :   h(H(D(S)}.                   
                         (7)

Then we have the following results

M+ = D+(X+



                         (8)

M- = D- (X-



We show first of these, whereas the second follows on exactly similar lines. 

(i) D+, X+ are orthogonal:

For any {g1, ig1}
[image: image40.wmf]Î

D+ ,g1
[image: image41.wmf]Î

D(S*) and any [h,ih}
[image: image42.wmf]Î

X+, h
[image: image43.wmf]Î

H ( D(S), we have

[{h,ih},{g,ig1}] = [h,g1] + [h,g1]=0

since [h,g1] = 0.

(ii) For any {h,ih}(X+,   h
[image: image44.wmf]Î

H ( D(S), and {f,g}(S, [g,h]=[f,ih]=0 for all

{f,g}(S.

This is because R(S)(
[image: image45.wmf])
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 and h(
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; so that X+(M+. The fact that D+ (M+ needs no proof.

(iii) Let {f,if}(M+, where f1(H, and so

f1=g1+h, g1(D(S), h(H ( D(S).
        

                      (9)

So that

{f,if}(S implies [g,f1] = [f,if1] for {f,g}(S

or

[g, g1+h]=[f,i(g1+h)]

But


[g,h]=[f,h]=0

Since g,f (
[image: image47.wmf])

(
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 and h(H ( D(S) hence [g,g1] = [f,ig1] for all {f,g}(S, and so

{g1,g1}(S*.

This shows that every element {f1,if1} of M+ can be written as sum of an element of D+ and an clement of X+.

From (i), (ii), and (iii) follows that

M+=X+(D+.        

            

(10)

From the above discussion we deduce, see [25], [26] and [30]. 

Theorem 3.2. Let S be a densely defined closed symmetric operator in H with finite but unequal deficiency indices, and let H1 be a Hilbert space such that H(H1 and such that S has a selfadjoint extension in H1.

Then this extension is not finite.

Proof. We have dim X+ = dim X- = dim (H(D(S*)). Thus if dim D+ = dim D-, both being finite, we se that dim M+ = dim M- is not possible unless dim (H(D(S*)) is infinite, see [4], [7], [28], [31] and [32].
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